metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Phimphaka Harding,^a* David J. Harding,^a Saowanit Saithong,^b Chaveng Pakawatchai^b and Sujittra Youngme^c

^aDepartment of Chemistry, School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand, ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and ^cDepartment of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

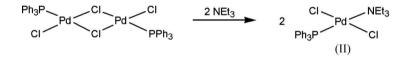
Correspondence e-mail: kphimpha@wu.ac.th

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å R factor = 0.052 wR factor = 0.106 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved


trans-Dichloro(triethylamine-κN)(triphenylphosphine-κP)palladium(II)

The Pd atom in the title compound, *trans*-[PdCl₂(C₆H₁₅N)- $(C_{18}H_{15}P)$], is in an approximately square-planar environment, coordinated by one triethylamine, one triphenylphosphine and two *trans* Cl ligands.

Received 10 June 2006 Accepted 14 June 2006

Comment

The chemistry of palladium(II) complexes containing nitrogen donor ligands continues to be of interest, in part due to the role of such compounds in C–N bond formation (Hartwig, 1998; Müller & Beller, 1998). In this work, we report the synthesis and structural characterization of the first palladium-tertiary amine complex containing a *trans*-dichloro-(triphenylphosphine) structural unit.

A one-pot reaction of $[\{Pd(\mu-Cl)Cl(PPh_3)\}_2]$ and *RNNNHR* (*R* = 3,5-dimethylphenyl) with excess NEt₃, for deprotonation of the triazene ligand, yielded not only the new Pd^{II} triazenide-bridged complex, $[(PPh_3)ClPd(\mu-RNNNR)_2PdCl-(PPh_3)]$, (I), but also a by-product, *viz. trans*- $[PdCl_2\{N(C_2H_5)_3\}\{P(C_6H_5)_3\}]$, (II) (Harding & Harding, 2006). Subsequently, a rational synthesis of (II) was devised (see scheme) and the compound was studied by single-crystal X-ray crystallography.

Complex (II) consists of a Pd^{II} metal centre bound to one triethylamine, one triphenylphosphine and two *trans* Cl ligands (Fig. 1). The Pd–Cl and Pd–P bond distances (Table 1) are in good agreement with other structurally related compounds, such as *trans*-[PdCl₂(NHCy₂)(PPh₃)] (Cy is cyclohexyl; Parvez *et al.*, 2004), *trans*-[PdCl₂(MeNHCH₂Ph)-(PPh₃)] (Jones *et al.*, 2000) and *trans*-[PdCl₂(indoline- κN)(PPh₃)] (Chen *et al.*, 1997). In contrast, the Pd–N bond distance is 2.236 (4) Å, far longer than that observed in palladium(II) complexes with secondary amines (Pd–N = 2.121–2.166 Å; Parvez *et al.*, 2004; Jones *et al.*, 2000; Chen *et al.*, 1997; Albinati *et al.*, 1992). The coordination of palladium has an approximately square-planar geometry (Table 1).

Experimental

NEt₃ (40 µl, 0.29 mmol) was added to a yellow suspension of [{Pd(μ -Cl)Cl(PPh₃)}₂] (0.0910 g, 0.1 mmol) in CH₂Cl₂ (10 ml). The resulting clear orange solution was stirred for 15 min, then *n*-hexane (15 ml) was added. The solvent was removed *in vacuo* until an orange solid started to precipitate. The mixture was stored at 253 K overnight,

yielding an orange solid (0.0670 g, 62%). Suitable orange plateshaped crystals were obtained by allowing *n*-hexane to diffuse into a concentrated solution of the complex in CH_2Cl_2 at 253 K.

Z = 4

 $D_{\rm v} = 1.465 {\rm Mg m}^{-3}$

 $0.21 \times 0.20 \times 0.01 \text{ mm}$

17249 measured reflections

4312 independent reflections 3639 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.05 \text{ mm}^{-1}$

T = 293 (2) K

Plate, orange

 $R_{\rm int} = 0.045$

 $\theta_{\rm max} = 25.0^\circ$

Crystal data

 $\begin{bmatrix} PdCl_2(C_6H_{15}N)(C_{18}H_{15}P) \end{bmatrix} \\ M_r = 540.76 \\ Monoclinic, P2_1/c \\ a = 16.6260 (14) \text{ Å} \\ b = 10.7341 (9) \text{ Å} \\ c = 14.9916 (13) \text{ Å} \\ \beta = 113.628 (2)^{\circ} \\ V = 2451.2 (4) \text{ Å}^3 \end{bmatrix}$

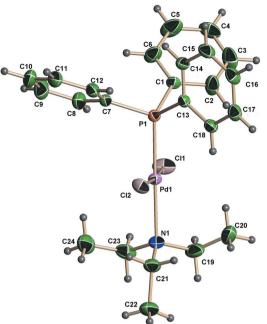
Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\min} = 0.804, T_{\max} = 0.990$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.106$ S = 1.174312 reflections 265 parameters H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0423P)^{2} + 1.5049P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.59 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.78 \text{ e} \text{ Å}^{-3}$


Table 1

Selected geometric parameters (Å, °).

Pd1-N1	2.236 (4)	Pd1-Cl2	2.2957 (12)
Pd1-P1	2.2459 (12)	Pd1-Cl1	2.2979 (14)
N1-Pd1-P1	178.30 (11)	N1-Pd1-Cl1	90.91 (11)
N1-Pd1-Cl2	93.80 (11)	P1-Pd1-Cl1	90.53 (5)
P1-Pd1-Cl2	84.83 (4)	Cl2-Pd1-Cl1	173.33 (6)

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.98 Å and with $U_{\rm iso}$ (H) values set equal to 1.2 times $U_{\rm eq}$ of the carrier atom for sp^2 H atoms and methylene CH₂ groups, and to 1.5 times $U_{\rm eq}$ of the carrier atom for the methyl H atoms.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XSHELL* (Bruker, 1997); software used to prepare material for publication: *XSHELL*.

Figure 1

The molecular structure of (II), showing 50% probability displacement ellipsoids.

Funding for this research was provided by the Thailand Research Fund (research grant No. MRG4780116). We also thank the Royal Golden Jubilee Scholarship Fund for a Postgraduate Scholarship (SS). The authors thank Professor N. G. Connelly, University of Bristol, England, for the generous supply of the Pd starting material.

References

- Albinati, A., Lianza, F., Berger, H., Arz, C. & Pregosin, P. S. (1992). Inorg. Chim. Acta, 198, 771–780.
- Bruker (1997). SMART, SAINT, XSHELL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, S., Vaquez, L., Noll, B. C. & DuBois, M. R. (1997). Organometallics, 16, 1757–1764.
- Harding, P. & Harding, D. J. (2006). Unpublished results.
- Hartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046-2067.
- Jones, W. D., Reynolds, K. A., Sperry, C. K., Lachicotte, R. J., Godleski, S. A. & Valente, R. R. (2000). *Organometallics*, **19**, 1661–1669.
- Müller, T. E. & Beller, M. (1998). Chem. Rev. 98, 675-704.
- Parvez, M., Badshah, A., Asma, M., Ali, S., Ahmad, S., Malik, A. & Ahmed, F. (2004). Acta Cryst. E60, m1602–m1604.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.